featuretools.EntitySet#
- class featuretools.EntitySet(id=None, dataframes=None, relationships=None)[source]#
- Stores all actual data and typing information for an entityset - id#
 - dataframe_dict#
 - relationships#
 - time_type#
 - Properties:
- metadata 
 - __init__(id=None, dataframes=None, relationships=None)[source]#
- Creates EntitySet - Parameters:
- id (str) – Unique identifier to associate with this instance 
- dataframes (dict[str -> tuple(DataFrame, str, str, dict[str -> str/Woodwork.LogicalType], dict[str->str/set], boolean)]) – Dictionary of DataFrames. Entries take the format {dataframe name -> (dataframe, index column, time_index, logical_types, semantic_tags, make_index)}. Note that only the dataframe is required. If a Woodwork DataFrame is supplied, any other parameters will be ignored. 
- relationships (list[(str, str, str, str)]) – List of relationships between dataframes. List items are a tuple with the format (parent dataframe name, parent column, child dataframe name, child column). 
 
 - Example - dataframes = { "cards" : (card_df, "id"), "transactions" : (transactions_df, "id", "transaction_time") } relationships = [("cards", "id", "transactions", "card_id")] ft.EntitySet("my-entity-set", dataframes, relationships) 
 - Methods - __init__([id, dataframes, relationships])- Creates EntitySet - add_dataframe(dataframe[, dataframe_name, ...])- Add a DataFrame to the EntitySet with Woodwork typing information. - add_interesting_values([max_values, ...])- Find or set interesting values for categorical columns, to be used to generate "where" clauses - add_last_time_indexes([updated_dataframes])- Calculates the last time index values for each dataframe (the last time an instance or children of that instance were observed). - add_relationship([parent_dataframe_name, ...])- Add a new relationship between dataframes in the entityset. - add_relationships(relationships)- Add multiple new relationships to a entityset - concat(other[, inplace])- Combine entityset with another to create a new entityset with the combined data of both entitysets. - find_backward_paths(start_dataframe_name, ...)- Generator which yields all backward paths between a start and goal dataframe. - find_forward_paths(start_dataframe_name, ...)- Generator which yields all forward paths between a start and goal dataframe. - get_backward_dataframes(dataframe_name[, deep])- Get dataframes that are in a backward relationship with dataframe - get_backward_relationships(dataframe_name)- get relationships where dataframe "dataframe_name" is the parent. - get_forward_dataframes(dataframe_name[, deep])- Get dataframes that are in a forward relationship with dataframe - get_forward_relationships(dataframe_name)- Get relationships where dataframe "dataframe_name" is the child - has_unique_forward_path(...)- Is the forward path from start to end unique? - normalize_dataframe(base_dataframe_name, ...)- Create a new dataframe and relationship from unique values of an existing column. - plot([to_file])- Create a UML diagram-ish graph of the EntitySet. - query_by_values(dataframe_name, instance_vals)- Query instances that have column with given value - replace_dataframe(dataframe_name, df[, ...])- Replace the internal dataframe of an EntitySet table, keeping Woodwork typing information the same. - reset_data_description()- set_secondary_time_index(dataframe_name, ...)- Set the secondary time index for a dataframe in the EntitySet using its dataframe name. - to_csv(path[, sep, encoding, engine, ...])- Write entityset to disk in the csv format, location specified by path. - to_dictionary()- to_parquet(path[, engine, compression, ...])- Write entityset to disk in the parquet format, location specified by path. - to_pickle(path[, compression, profile_name])- Write entityset in the pickle format, location specified by path. - Attributes - dataframes- metadata- Returns the metadata for this EntitySet.