Feature primitives#
Feature primitives are the building blocks of Featuretools. They define individual computations that can be applied to raw datasets to create new features. Because a primitive only constrains the input and output data types, they can be applied across datasets and can stack to create new calculations.
Why primitives?#
The space of potential functions that humans use to create a feature is expansive. By breaking common feature engineering calculations down into primitive components, we are able to capture the underlying structure of the features humans create today.
A primitive only constrains the input and output data types. This means they can be used to transfer calculations known in one domain to another. Consider a feature which is often calculated by data scientists for transactional or event logs data: average time between events. This feature is incredibly valuable in predicting fraudulent behavior or future customer engagement.
DFS achieves the same feature by stacking two primitives "time_since_previous"
and "mean"
[1]:
import featuretools as ft
es = ft.demo.load_mock_customer(return_entityset=True)
feature_defs = ft.dfs(
entityset=es,
target_dataframe_name="customers",
agg_primitives=["mean"],
trans_primitives=["time_since_previous"],
features_only=True,
)
feature_defs
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/woodwork/type_sys/utils.py:33: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(
[1]:
[<Feature: zip_code>,
<Feature: MEAN(transactions.amount)>,
<Feature: TIME_SINCE_PREVIOUS(join_date)>,
<Feature: MEAN(sessions.MEAN(transactions.amount))>,
<Feature: MEAN(sessions.TIME_SINCE_PREVIOUS(session_start))>]
Note
The primitive arguments to DFS (eg. agg_primitives
and trans_primitives
in the example above) accept snake_case
, camelCase
, or TitleCase
strings of included Featuretools primitives (ie. time_since_previous
, timeSincePrevious
, and TimeSincePrevious
are all acceptable inputs).
Note
When dfs
is called with features_only=True
, only feature definitions are returned as output. By default this parameter is set to False
. This parameter is used quickly inspect the feature definitions before the spending time calculating the feature matrix.
A second advantage of primitives is that they can be used to quickly enumerate many interesting features in a parameterized way. This is used by Deep Feature Synthesis to get several different ways of summarizing the time since the previous event.
[2]:
feature_matrix, feature_defs = ft.dfs(
entityset=es,
target_dataframe_name="customers",
agg_primitives=["mean", "max", "min", "std", "skew"],
trans_primitives=["time_since_previous"],
)
feature_matrix[
[
"MEAN(sessions.TIME_SINCE_PREVIOUS(session_start))",
"MAX(sessions.TIME_SINCE_PREVIOUS(session_start))",
"MIN(sessions.TIME_SINCE_PREVIOUS(session_start))",
"STD(sessions.TIME_SINCE_PREVIOUS(session_start))",
"SKEW(sessions.TIME_SINCE_PREVIOUS(session_start))",
]
]
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f1ae5121700> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f1ae5125040> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f1ae51215e0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f1ae5121ee0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f1ae5121700> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f1ae5121ee0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f1ae51215e0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f1ae5125040> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f1ae5121ee0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f1ae5125040> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function max at 0x7f1ae51215e0> is currently using SeriesGroupBy.max. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "max" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function min at 0x7f1ae5121700> is currently using SeriesGroupBy.min. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "min" instead.
to_merge = base_frame.groupby(
[2]:
MEAN(sessions.TIME_SINCE_PREVIOUS(session_start)) | MAX(sessions.TIME_SINCE_PREVIOUS(session_start)) | MIN(sessions.TIME_SINCE_PREVIOUS(session_start)) | STD(sessions.TIME_SINCE_PREVIOUS(session_start)) | SKEW(sessions.TIME_SINCE_PREVIOUS(session_start)) | |
---|---|---|---|---|---|
customer_id | |||||
5 | 1007.500000 | 1170.0 | 715.0 | 157.884451 | -1.507217 |
4 | 999.375000 | 1625.0 | 650.0 | 308.688904 | 1.065177 |
1 | 966.875000 | 1170.0 | 715.0 | 171.754341 | -0.254557 |
3 | 888.333333 | 1170.0 | 650.0 | 177.613813 | 0.434581 |
2 | 725.833333 | 975.0 | 520.0 | 194.638554 | 0.162631 |
Aggregation vs Transform Primitive#
In the example above, we use two types of primitives.
Aggregation primitives: These primitives take related instances as an input and output a single value. They are applied across a parent-child relationship in an EntitySet. E.g: "count"
, "sum"
, "avg_time_between"
.
Transform primitives: These primitives take one or more columns from a dataframe as an input and output a new column for that dataframe. They are applied to a single dataframe. E.g: "hour"
, "time_since_previous"
, "absolute"
.
The above graphs were generated using the graph_feature
function. These feature lineage graphs help to visually show how primitives were stacked to generate a feature.
For a DataFrame that lists and describes each built-in primitive in Featuretools, call ft.list_primitives()
.
[3]:
ft.list_primitives().head(5)
[3]:
name | type | description | valid_inputs | return_type | |
---|---|---|---|---|---|
0 | is_monotonically_decreasing | aggregation | Determines if a series is monotonically decrea... | <ColumnSchema (Semantic Tags = ['numeric'])> | <ColumnSchema (Logical Type = BooleanNullable)> |
1 | is_unique | aggregation | Determines whether or not a series of discrete... | <ColumnSchema (Semantic Tags = ['category'])> | <ColumnSchema (Logical Type = BooleanNullable)> |
2 | is_monotonically_increasing | aggregation | Determines if a series is monotonically increa... | <ColumnSchema (Semantic Tags = ['numeric'])> | <ColumnSchema (Logical Type = BooleanNullable)> |
3 | median_count | aggregation | Calculates the number of occurrences of the me... | <ColumnSchema (Semantic Tags = ['numeric'])> | <ColumnSchema (Logical Type = IntegerNullable)... |
4 | variance | aggregation | Calculates the variance of a list of numbers. | <ColumnSchema (Semantic Tags = ['numeric'])> | <ColumnSchema (Logical Type = Double) (Semanti... |
For a DataFrame of metrics that summarizes various properties and capabilities of all of the built-in primitives in Featuretools, call ft.summarize_primitives()
.
[4]:
ft.summarize_primitives()
[4]:
Metric | Count | |
---|---|---|
0 | total_primitives | 203 |
1 | aggregation_primitives | 65 |
2 | transform_primitives | 138 |
3 | unique_input_types | 23 |
4 | unique_output_types | 22 |
5 | uses_multi_input | 50 |
6 | uses_multi_output | 2 |
7 | uses_external_data | 1 |
8 | are_controllable | 87 |
9 | uses_address_input | 0 |
10 | uses_age_input | 0 |
11 | uses_age_fractional_input | 0 |
12 | uses_age_nullable_input | 0 |
13 | uses_boolean_input | 18 |
14 | uses_boolean_nullable_input | 12 |
15 | uses_categorical_input | 0 |
16 | uses_country_code_input | 0 |
17 | uses_currency_code_input | 0 |
18 | uses_datetime_input | 68 |
19 | uses_double_input | 4 |
20 | uses_email_address_input | 2 |
21 | uses_filepath_input | 1 |
22 | uses_ip_address_input | 0 |
23 | uses_integer_input | 4 |
24 | uses_integer_nullable_input | 0 |
25 | uses_lat_long_input | 6 |
26 | uses_natural_language_input | 17 |
27 | uses_ordinal_input | 4 |
28 | uses_person_full_name_input | 3 |
29 | uses_phone_number_input | 0 |
30 | uses_postal_code_input | 2 |
31 | uses_sub_region_code_input | 0 |
32 | uses_timedelta_input | 0 |
33 | uses_url_input | 3 |
34 | uses_unknown_input | 0 |
35 | uses_numeric_tag_input | 87 |
36 | uses_category_tag_input | 11 |
37 | uses_index_tag_input | 1 |
38 | uses_time_index_tag_input | 29 |
39 | uses_date_of_birth_tag_input | 1 |
40 | uses_ignore_tag_input | 0 |
41 | uses_passthrough_tag_input | 0 |
42 | uses_foreign_key_tag_input | 1 |
Defining Custom Primitives#
The library of primitives in Featuretools is constantly expanding. Users can define their own primitive using the APIs below. To define a primitive, a user will
Specify the type of primitive
Aggregation
orTransform
Define the input and output data types
Write a function in python to do the calculation
Annotate with attributes to constrain how it is applied
Once a primitive is defined, it can stack with existing primitives to generate complex patterns. This enables primitives known to be important for one domain to automatically be transfered to another.
[5]:
import pandas as pd
from woodwork.column_schema import ColumnSchema
from woodwork.logical_types import Datetime, NaturalLanguage
from featuretools.primitives import AggregationPrimitive, TransformPrimitive
from featuretools.tests.testing_utils import make_ecommerce_entityset
Simple Custom Primitives#
[6]:
class Absolute(TransformPrimitive):
name = "absolute"
input_types = [ColumnSchema(semantic_tags={"numeric"})]
return_type = ColumnSchema(semantic_tags={"numeric"})
def get_function(self):
def absolute(column):
return abs(column)
return absolute
Above, we created a new transform primitive that can be used with Deep Feature Synthesis by deriving a new primitive class using TransformPrimitive
as a base and overriding get_function
to return a function that calculates the feature. Additionally, we set the input data types that the primitive applies to and the return data type. Input and return data types are defined using a Woodwork ColumnSchema. A full guide on Woodwork logical types and semantic tags can be found in the Woodwork
Understanding Logical Types and Semantic Tags guide.
Similarly, we can make a new aggregation primitive using AggregationPrimitive
.
[7]:
class Maximum(AggregationPrimitive):
name = "maximum"
input_types = [ColumnSchema(semantic_tags={"numeric"})]
return_type = ColumnSchema(semantic_tags={"numeric"})
def get_function(self):
def maximum(column):
return max(column)
return maximum
Because we defined an aggregation primitive, the function takes in a list of values but only returns one.
Now that we’ve defined two primitives, we can use them with the dfs function as if they were built-in primitives.
[8]:
feature_matrix, feature_defs = ft.dfs(
entityset=es,
target_dataframe_name="sessions",
agg_primitives=[Maximum],
trans_primitives=[Absolute],
max_depth=2,
)
feature_matrix.head(5)[
[
"customers.MAXIMUM(transactions.amount)",
"MAXIMUM(transactions.ABSOLUTE(amount))",
]
]
[8]:
customers.MAXIMUM(transactions.amount) | MAXIMUM(transactions.ABSOLUTE(amount)) | |
---|---|---|
session_id | ||
1 | 146.81 | 141.66 |
2 | 149.02 | 135.25 |
3 | 149.95 | 147.73 |
4 | 139.43 | 129.00 |
5 | 149.95 | 139.20 |
Word Count Example#
Here we define a transform primitive, WordCount
, which counts the number of words in each row of an input and returns a list of the counts.
[9]:
class WordCount(TransformPrimitive):
"""
Counts the number of words in each row of the column. Returns a list
of the counts for each row.
"""
name = "word_count"
input_types = [ColumnSchema(logical_type=NaturalLanguage)]
return_type = ColumnSchema(semantic_tags={"numeric"})
def get_function(self):
def word_count(column):
word_counts = []
for value in column:
words = value.split(None)
word_counts.append(len(words))
return word_counts
return word_count
[10]:
es = make_ecommerce_entityset()
feature_matrix, features = ft.dfs(
entityset=es,
target_dataframe_name="sessions",
agg_primitives=["sum", "mean", "std"],
trans_primitives=[WordCount],
)
feature_matrix[
[
"customers.WORD_COUNT(favorite_quote)",
"STD(log.WORD_COUNT(comments))",
"SUM(log.WORD_COUNT(comments))",
"MEAN(log.WORD_COUNT(comments))",
]
]
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f1ae519df70> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f1ae5125040> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f1ae5121ee0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function sum at 0x7f1ae519df70> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function std at 0x7f1ae5125040> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead.
to_merge = base_frame.groupby(
/home/docs/checkouts/readthedocs.org/user_builds/feature-labs-inc-featuretools/envs/latest/lib/python3.9/site-packages/featuretools/computational_backends/feature_set_calculator.py:781: FutureWarning: The provided callable <function mean at 0x7f1ae5121ee0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead.
to_merge = base_frame.groupby(
[10]:
customers.WORD_COUNT(favorite_quote) | STD(log.WORD_COUNT(comments)) | SUM(log.WORD_COUNT(comments)) | MEAN(log.WORD_COUNT(comments)) | |
---|---|---|---|---|
id | ||||
0 | 9.0 | 540.436860 | 2500.0 | 500.0 |
1 | 9.0 | 583.702550 | 1732.0 | 433.0 |
2 | 9.0 | NaN | 246.0 | 246.0 |
3 | 6.0 | 883.883476 | 1256.0 | 628.0 |
4 | 6.0 | 0.000000 | 9.0 | 3.0 |
5 | 12.0 | 19.798990 | 68.0 | 34.0 |
By adding some aggregation primitives as well, Deep Feature Synthesis was able to make four new features from one new primitive.
Multiple Input Types#
If a primitive requires multiple features as input, input_types
has multiple elements, eg [ColumnSchema(semantic_tags={'numeric'}), ColumnSchema(semantic_tags={'numeric'})]
would mean the primitive requires two columns with the semantic tag numeric
as input. Below is an example of a primitive that has multiple input features.
[11]:
class MeanSunday(AggregationPrimitive):
"""
Finds the mean of non-null values of a feature that occurred on Sundays
"""
name = "mean_sunday"
input_types = [
ColumnSchema(semantic_tags={"numeric"}),
ColumnSchema(logical_type=Datetime),
]
return_type = ColumnSchema(semantic_tags={"numeric"})
def get_function(self):
def mean_sunday(numeric, datetime):
days = pd.DatetimeIndex(datetime).weekday.values
df = pd.DataFrame({"numeric": numeric, "time": days})
return df[df["time"] == 6]["numeric"].mean()
return mean_sunday
[12]:
feature_matrix, features = ft.dfs(
entityset=es,
target_dataframe_name="sessions",
agg_primitives=[MeanSunday],
trans_primitives=[],
max_depth=1,
)
feature_matrix[
[
"MEAN_SUNDAY(log.value, datetime)",
"MEAN_SUNDAY(log.value_2, datetime)",
]
]
[12]:
MEAN_SUNDAY(log.value, datetime) | MEAN_SUNDAY(log.value_2, datetime) | |
---|---|---|
id | ||
0 | NaN | NaN |
1 | NaN | NaN |
2 | NaN | NaN |
3 | 2.5 | 1.0 |
4 | 7.0 | 3.0 |
5 | NaN | NaN |