featuretools.primitives.AverageCountPerUnique#

class featuretools.primitives.AverageCountPerUnique(skipna=True)[source]#

Determines the average count across all unique value.

Parameters:

skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null.

Examples

Determine the average count values for all unique items in the input >>> input = [1, 1, 2, 2, 3, 4, 5, 6, 7, 8] >>> avg_count_per_unique = AverageCountPerUnique() >>> avg_count_per_unique(input) 1.25

Determine the average count values for all unique items in the input with nan values ignored >>> input = [1, 1, 2, 2, 3, 4, 5, None, 6, 7, 8] >>> avg_count_per_unique = AverageCountPerUnique() >>> avg_count_per_unique(input) 1.25

Determine the average count values for all unique items in the input with nan values included >>> input = [1, 2, 2, 3, 4, 5, None, 6, 7, 8, 9] >>> avg_count_per_unique_skipna_false = AverageCountPerUnique(skipna=False) >>> avg_count_per_unique_skipna_false(input) 1.1

__init__(skipna=True)[source]#

Methods

__init__([skipna])

flatten_nested_input_types(input_types)

Flattens nested column schema inputs into a single list.

generate_name(base_feature_names, ...)

generate_names(base_feature_names, ...)

get_args_string()

get_arguments()

get_description(input_column_descriptions[, ...])

get_filepath(filename)

get_function()

Attributes

base_of

base_of_exclude

commutative

default_value

Default value this feature returns if no data found.

description_template

input_types

woodwork.ColumnSchema types of inputs

max_stack_depth

name

Name of the primitive

number_output_features

Number of columns in feature matrix associated with this feature

return_type

ColumnSchema type of return

stack_on

stack_on_exclude

stack_on_self

uses_calc_time