featuretools.primitives.AverageCountPerUnique#
- class featuretools.primitives.AverageCountPerUnique(skipna=True)[source]#
- Determines the average count across all unique value. - Parameters:
- skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null. 
 - Examples - Determine the average count values for all unique items in the input >>> input = [1, 1, 2, 2, 3, 4, 5, 6, 7, 8] >>> avg_count_per_unique = AverageCountPerUnique() >>> avg_count_per_unique(input) 1.25 - Determine the average count values for all unique items in the input with nan values ignored >>> input = [1, 1, 2, 2, 3, 4, 5, None, 6, 7, 8] >>> avg_count_per_unique = AverageCountPerUnique() >>> avg_count_per_unique(input) 1.25 - Determine the average count values for all unique items in the input with nan values included >>> input = [1, 2, 2, 3, 4, 5, None, 6, 7, 8, 9] >>> avg_count_per_unique_skipna_false = AverageCountPerUnique(skipna=False) >>> avg_count_per_unique_skipna_false(input) 1.1 - Methods - __init__([skipna])- flatten_nested_input_types(input_types)- Flattens nested column schema inputs into a single list. - generate_name(base_feature_names, ...)- generate_names(base_feature_names, ...)- get_args_string()- get_arguments()- get_description(input_column_descriptions[, ...])- get_filepath(filename)- get_function()- Attributes - base_of- base_of_exclude- commutative- default_value- Default value this feature returns if no data found. - description_template- input_types- woodwork.ColumnSchema types of inputs - max_stack_depth- name- Name of the primitive - number_output_features- Number of columns in feature matrix associated with this feature - return_type- ColumnSchema type of return - stack_on- stack_on_exclude- stack_on_self- uses_calc_time